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ABSTRACT • Detection of defects on wood during quality processes in the wood industry is extremely important 
both economically and in terms of production and use. In order to minimize the time and cost loss caused by prod-
ucts obtained with defective wood, manufacturers want to detect defects in wood early by applying quality control 
process. For this purpose, in this study, some experiments are carried out using texture analysis methods and ma-
chine learning classifiers to detect defective wood from wood images. The features of wood images in the dataset 
taken from literature are extracted separately with six texture feature extractors to detect defective wood. Features 
are classified using twelve different machine learning classifiers, primarily tree-based ensemble classifiers. Cross-
validation is used in all experiments to reduce classifier bias. The results obtained are presented comparatively in 
terms of each feature and classifier. The findings show that the most effective features in detecting defective wood 
are extracted by the Local Binary Pattern (LBP) method and the most effective classifier is the Random Forest 
Algorithm. An accuracy rate of 96.75 % is achieved with the LBP-RandomForestClassifier and, classification 
performance is also presented for each algorithm by creating hybrid feature vectors.

KEYWORDS: wood defect detection; feature extraction; machine learning; wood products engineering; com-
puter vision

SAŽETAK • Otkrivanje grešaka na drvu tijekom kontrole kvalitete u drvnoj industriji iznimno je važno kako u 
ekonomskom, tako i u proizvodnom smislu. Da bi se smanjili troškovi i gubitci vremena zbog drvnih proizvoda s 
greškama, cilj proizvođača je procesom kontrole kvalitete rano otkriti greške na drvu. Stoga je u ovoj studiji istra-
žena mogućnost otkrivanja grešaka na drvu sa slika primjenom metoda analize teksture i klasifikatora strojnog 
učenja. Obilježja slika drva preuzetih iz literature izdvojena su uz pomoć šest ekstraktora teksture kako bi se otkri-
le greške na drvu, a zatim su klasificirane uz pomoć 12 različitih klasifikatora, ponajprije klasifikatora ansambla 
stabla odlučivanja dobivenih strojnim učenjem. U svim je eksperimentima primijenjena unakrsna provjera kako bi 
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Kılıç, Kılıç, Doğru, Özcan: Comparison of Various Feature Extractors and Classifiers in Wood Defect Detection

134  76 (2) 133-148 (2025)

se smanjila eventualna pristranost klasifikatora. Dobiveni su rezultati prikazani komparativno, prema svojstvima 
i klasifikatorima. Rezultati pokazuju da su najučinkovitija svojstva za otkrivanje grešaka na drvu izdvojena meto-
dom lokalnoga binarnog uzorka (LBP), a najučinkovitiji je klasifikator algoritam slučajnih šuma. Stopa točnosti 
od 96,75 % postiže se kombinacijom LBP metode i algoritma slučajnih šuma, a za svaki algoritam predstavljena 
je i izvedba klasifikacije stvaranjem hibridnih vektora svojstava.

KLJUČNE RIJEČI: detekcija grešaka na drvu; ekstrakcija svojstava; strojno učenje; izrada proizvoda od drva; 
računalni vid

1  INTRODUCTION
1.  UVOD

Throughout history, wood has been used as a ba-
sic building material for many industries and continues 
to be used in a wide range of applications today. Wood 
is unique and its natural structure, aesthetic appeal, 
strength and environmentally friendly properties offer 
great value to a range of industries from construction to 
furniture manufacturing. However, the use of defective 
wood in the production process, and the defects that 
can occur as a result, can lead to serious economic loss-
es as well as safety risks. Early detection and effective 
classification of such defects is therefore vital to the 
wood industry. In addition, the decline of wood re-
sources has become an important focus for practition-
ers and researchers in recent years in order to use forest 
resources in a more sustainable manner. The rapid and 
effective detection of surface defects in wood can in-
crease the utile efficiency of wood and reduce exces-
sive wood consumption (Pölzleitner and Schwingshakl 
1992; Schmoldt et al., 1997; Norlander et al., 2015).

Traditionally, wood grading has been done man-
ually. Today, however, automatic grading machines are 
widely used to speed up the process. By using the same 
set of mechanical devices and changing the grading 
task, different sorting tasks can be easily performed. 
Among these tasks, classification is perhaps the most 
important (Hu et al., 2019). Unlike traditional methods 
that rely on visual inspection by operators, methods 
used to detect surface defects in wood involve com-
puter analysis of images of the wood surface. A Charge-
Coupled Device (CCD) camera is usually used for this 
process. The process of recognizing wood defects is 
based on the design of the image analysis algorithm, 
with frequent use of digital image processing (Xie, 
2013). The classification process typically begins with 
image pre-processing, such as greyscale transforma-
tion, histogram equalization, spatial or frequency do-
main filtering. Next, the wood images are processed to 
extract defect features. Finally, a machine learning al-
gorithm is used to classify the images (Chen et al., 
2023a). Machine learning is a technology that can au-
tomatically generate predictions and decisions by 
learning from data. This technology makes it possible 
to develop solutions to complex problems with differ-

ent algorithms used to obtain results. Each algorithm is 
designed to understand a specific data structure and 
make inferences, and is particularly effective with 
large data sets. These algorithms can be broadly cate-
gorized into three main types: unsupervized learning, 
supervized learning and reinforcement learning. The 
combination of digital image processing and machine 
learning algorithms is the preferred methodology for 
detecting and classifying wood knot defects (Qi et al., 
2010; Mu and Qi, 2009). This methodology is not only 
used for wood defect detection but also for quality con-
trol in automated production lines in various sectors 
such as textiles fabrics, ceramic tiles and pharmaceuti-
cals (Gao et al., 2021; Liu et al., 2021; Shahrabadi et 
al., 2022; Zhang et al., 2023).

The detection of defects on the surface of indus-
trial products has become a very promising area of aca-
demic research. There are many studies in the literature 
dealing with fabric defect detection (Raheja et al., 
2013; Liu and Zheng, 2020; Liu and Le, 2021), leather 
surface inspection (Hoang et al., 1997; Chen et al., 
2024),  detection of defect in pharma (Galata et al., 
2021), defect detection in electronic surfaces (Tsai and 
Huang, 2019; Chen et al., 2023b), metallic surface de-
fect detection (Tao et al., 2018), concrete crack detec-
tion (Lei et al., 2024) and defect detection of mobile 
phone surface (Jian et al., 2017). Studies specific to the 
wood industry are also available in the literature. 
Zhang et al. (2015) used principal component analysis 
(PCA) and compressed sensing to identify wood de-
fects in wood plate images. YongHua and Jin-Cong 
(2015) focused on three common wood defects: dead 
knots, poles and living knots. In their study, they intro-
duced a hybrid defect detection method based on wood 
surface texture features, which combines the advan-
tages of Tamura texture and Grey-Level Co-occurrence 
Matrix (GLCM) methods. Li et al. (2017) presented a 
wood defect detection method leveraging linear discri-
minant analysis (LDA) and the utilization of com-
pressed sensor images. Chang et al. (2018) applied 
convex optimization (CO) and the Otsu segmentation 
method to obtain a comprehensive image of wood sur-
face defects. The results between the original image 
and the defect image are used to evaluate the segmen-
tation performance. A classification and regression tree 
(CART) classifier is then constructed. Li et al. (2019) 
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proposed a classification algorithm for distinguishing 
between cracks and linear mineral lines on the surface 
of birch veneer. This algorithm relies on Local Binary 
Pattern and Local Binary Differential Excitation Pat-
tern for effective classification. Urbonas et al. (2019) 
presented an automatic visual inspection system for 
locating and classifying defects on wood veneer sur-
faces using a faster Region-Based Convolutional Neu-
ral Network (faster R-CNN). Shi et al. (2020) intro-
duced an efficient detection method with high accuracy 
and speed for online production. They developed an 
integrated model, the Glance Multi-Channel Mask Re-
gion Convolutional Neural Network (R-CNN), specifi-
cally designed for wood veneer defect detection. This 
model incorporates both a Glance network and a multi-
channel mask R-CNN. Wu et al. (2022) developed a 
wood surface defect detection approach based on fea-
ture fusion. The Support Vector Machine (SVM) is 
used as the classifier for this approach. There is no pre-
vious literature on the classical machine learning ap-
proach in the form of binary classification regarding 
the dataset used in the study. Instead, a general litera-
ture summary is given in Table 1.

The proposed study aims to evaluate the effec-
tiveness of different image processing methods and 
classification algorithms in detecting defects on wood 
surface. The primary objective is to improve the early 
detection of defects in wood and to evaluate the perfor-

mance of different feature extraction methods and clas-
sification algorithms in achieving this objective. In ad-
dition, the study aims to contribute to the identification 
of potentially valuable techniques and algorithms for 
defect detection in both the production and utilization 
processes of wood. For this purpose, an extensive data-
set of 20,276 images of both defective and undefect 
wood surfaces is used. Dataset balancing is a process to 
address sample count imbalances between classes. 
Usually, when there is a large difference between the 
classes, machine learning models may focus more on 
the majority class, making it difficult to correctly clas-
sify the minority class. For this reason, data set balanc-
ing was performed. Subsequently, different feature ex-
traction methods were applied to obtain image features, 
followed by the implementation of classification pro-
cesses using classifiers of different structures. In this 
study, binary classification for wood defect detection 
was performed using feature extraction and classical 
machine learning classifiers. The advantages of ma-
chine learning in the field of image processing are as 
follows: It has important features such as coping with 
complexity, feature extraction ability, flexibility, suita-
bility for large data sets, transfer learning possibility, 
updatability, and complexity reduction. In this study, 
machine learning models were trained on a standard 
processor (CPU) instead of using a GPU. This choice 
aims to make computational resources more wide-

Table 1 Literature summary
Tablica 1. Sažetak literature

Reference
Navod iz literature

Methodology
Metodologija

Techniques
Tehnike

Application
Primjena

Metrics
Metrika

Pölzleitner and 
Schwingshakl (1992) Manual wood grading Real Time / Feature vector Spruce boards 95 % Accuracy

Zhang et al. (2015) PCA and compressed 
sensing

Principal Component 
Analysis (PCA), Com-
pressed Sensing

Wood plate defect 
identification 92 % Accuracy

YongHua and Jin-Cong 
(2015)

Hybrid method based 
on texture features

Tamura texture, Grey-Level 
Co-occurrence Matrix 
(GLCM)

Detection of dead 
knots, poles, and living 
knots

91.83 % Accuracy

Li et al. (2017) LDA and compressed 
sensor images

Linear Discriminant 
Analysis (LDA), Com-
pressed Sensor Images

Wood defect detection 94 % Accuracy

Chang et al. (2018) Convex optimization 
and Otsu segmentation

Convex Optimization, Otsu 
Segmentation

Comprehensive wood 
surface defect image 
evaluation

94.1 % Accuracy

Li et al. (2019)
Local Binary Pattern 
and Local Binary 
Differential Excitation

Local Binary Pattern, Local 
Binary Differential 
Excitation

Classification of cracks 
and linear mineral lines 
on birch veneer surface

93 % Recall

Urbonas et al. (2019) Faster R-CNN
Region-Based Convolu-
tional Neural Network 
(faster R-CNN)

Automatic visual 
inspection of wood 
veneer surfaces

96.1 % Accuracy

Shi et al. (2020) Glance Multi-Channel 
Mask R-CNN

Glance network, Multi-
Channel Mask R-CNN

Efficient method for 
wood veneer defect 
detection

95.31 % Accuracy

Wu et al. (2022)
Feature fusion and 
Support Vector 
Machine

Support Vector Machine 
(SVM)

Wood surface defect 
detection based on 
feature fusion

91.26 % Accuracy



Kılıç, Kılıç, Doğru, Özcan: Comparison of Various Feature Extractors and Classifiers in Wood Defect Detection

136  76 (2) 133-148 (2025)

spread and accessible. Therefore, computers with high 
processing power were not required.

In this study, the existing dataset is analyzed and 
the wood images are classified into two categories: de-
fective or undefect wood. Also, many methods are used 
in the feature extraction phase, and the performance of 
the feature extraction methods is presented compara-
tively. The extracted features are evaluated with differ-
ent classifiers and a cross-validation technique is used 
to reduce classifier bias. All the different extracted fea-
tures are combined and the classifier performances are 
measured when different features are combined.

The remaining sections of the paper are organ-
ized as follows: Section 2 presents the preprocessing 
steps, feature extraction methods, and classifiers used; 
Section 3 provides the experimental results and com-
parative analysis, while Section 4 presents the conclu-
sions and future research directions.

2  MATERIALS AND METHODS
2.  MATERIJALI I METODE

The following subsections provide details about 
the dataset and its features, pre-processing, feature ex-
traction methods and classifiers used in the study.

2.1  Dataset
2.1.  Skup podataka

The dataset is taken from Kodytek et al. (2021). 
There are 20,276 wood surface images in the dataset 
with ten common types of wood defects including var-
ious types of knots, cracks, blue stain, resin and heart-
wood. Figure 1 shows wood defects samples within the 
dataset.

While 1,992 of these images contain images of cut 
wood with no defects, 18,284 images contain images of 
wood with one or more surface defects. On average, 
each image contains 2.2 defects, with 6.7 % of the im-
ages having more than three defects, and with the maxi-
mum number of defects in a single image being 16.

The dataset initially had a serious imbalance be-
tween undefect and defect images. There were only 
1,992 undefect images, while there were 18,284 defect 
images. In our opinion deep learning models tend to 
focus predominantly on the larger class in unbalanced 

data sets. Therefore, we balanced the dataset by in-
creasing the defect class. The number of defect exam-
ples was increased to 18,284 with data augmentation 
techniques (rotation, shift, brightness variation, etc.) so 
as to become equal to the defect examples. This pro-
cess is necessary to balance the learning across classes 
and improve model performance.

In addition, the original images have a high reso-
lution of 2800×1024 pixels. However, training at this 
resolution increased the computational cost and made 
it difficult for the models to work efficiently. There-
fore, the images were resized to 300×300 pixels. This 
resizing provided sufficient resolution to train the mod-
el faster while preserving the features of the defects in 
the image. The image resolution was reduced from 
2800×1024 to 300×300 pixels in order to reduce the 
high computational cost and train the model more ef-
ficiently. In this process, the defect details were pre-
served by using bilinear interpolation. As a result, sig-
nificant improvements were obtained in processing 
time and resource usage with an acceptable difference 
in accuracy. Bilinear interpolation is a mathematical 
method used to resize an image or estimate a set of data 
at a higher resolution. In this way, the resizing process 
was performed without any problems with the features 
in the existing images.

These methods were applied to both solve the im-
balance problem and increase the accuracy and overall 
performance of the model.

In this study, various data augmentation tech-
niques were applied to increase the generalization ability 
of the model. These augmentation techniques were per-
formed using the Augmentor: An Image Augmentation 
Library for Machine Learning library developed by 
Bloice et al. (2017). The images were rotated to the right 
or left with a maximum of 25 degrees with a 70 % prob-
ability, thus providing variation at different angles and 
increasing the model robustness against transforma-
tions. In addition, the images were flipped horizontally 
with a 50 % probability, thus providing symmetrical fea-
tures to the model and making the model more flexible. 
The contrast of the images was changed by a random 
factor between 0.5 and 1.5 with a 50 % probability, 
which aimed to allow the model to adapt to different 
lighting conditions. Similarly, the brightness levels were 

Figure 1 Wood defects within the dataset (A – live knot, B – dead knot, C – quartzity, D – knot with crack, E – knot missing, 
F – crack, G – overgrown, H – resin, I – marrow and J – blue stain)
Slika 1. Greške drva u skupu podataka (A – zdrava kvrga, B – nesrasla kvrga, C – inkrustacije minerala, D – ispucala kvrga, 
E – ispadajuća kvrga, F – pukotina, G – obrasla kvrga, H – smolenica, I – srčika, J – plavilo)
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randomly adjusted between 0.7 and 1.3 with a 50 % 
probability, thus increasing the sensitivity of the model 
to lighting changes in the images. These data augmenta-
tion processes allowed the model to be trained with a 
wider range of images, allowing it to generalize better 
under various conditions. The data augmentation phase 
of data pre-processing is shown in Figure 2.

2.2  Feature extraction
2.2.  Izdvajanje svojstava

Feature extraction is the process of determining 
distinctive features from images. The purpose of this 
process is to represent the image with fewer values. In 
this way, decision making can be achieved with more 
meaningful and less dimensional values. Classification 
performances are directly dependent on good feature 
extraction. Well-extracted meaningful features in-
crease classification performance. Many feature ex-
traction methods have been proposed in the literature. 
In image analysis, especially in applications such as 
wood defect detection, the features used are generally 
grouped into four main groups: geometric features, sta-
tistical features, texture features, and color features 
(Mutlag et al., 2020). Another grouping made accord-
ing to properties and models includes color based fea-
tures, texture features, intensity features, human fea-
tures, finger print features, conceptual features, and 
text features (Salau and Jain, 2009). In particular, a 
survey of texture feature extraction methods is also 
available in the literature (Humeau-Heurtier, 2019). 
Each has its pros and cons depending on the area in 
which they are used. 

In this study, some well-known texture feature 
extraction methods are used to detect defective wood. 
These are Local Binary Pattern (LBP), Histogram of 
Oriented Gradients (HOG), Gray-Level Co-occurrence 
Matrix (GLCM), Sobel, Gabor and Multi Block LBP 
(MB-LBP). LBP (Local Binary Pattern) is a feature ex-
traction method in which pixels are compared to their 
surrounding neighbouring pixels. Each pixel is com-
pared with its neighbouring pixels to form a binary pat-
tern. This pattern represents the texture and structure 

information in the image, so it is effective in recogniz-
ing small changes and patterns (Ojala et al., 2002). 
HOG is used for object recognition. It splits the image 
into small cells, calculates gradients in each cell, and 
then creates histograms of those gradients (Dalal and 
Triggs, 2005). GLCM captures the relationships be-
tween gray level pixels in an image (Haralick et al., 
1973). Sobel is a filtering method used for edge detec-
tion. Sobel operators calculate the gradient of pixel in-
tensity in the image (Duda and Hart, 1973). Gabor fil-
ters extract features from images using sinusoidal 
waves vibrating at different frequencies and in differ-
ent directions (Daugman, 1985). MB-LBP is an expan-
sion of the traditional LBP. MB-LBP divides an image 
into blocks of specific sizes. Within each block, pixels 
are compared with neighboring pixels around them us-
ing the LBP (Liu et al., 2019). 

The selection of texture feature extraction meth-
ods to be used in the study is based on factors such as 
suitability to the problem addressed in this study, the 
class to which it belongs, computational cost and ease of 
implementation. LBP and its extension MB-LBP fall 
into the class of statistical approaches. They combine 
structural and statistical methods, resulting in improved 
performance for texture analysis. HOG is in human fea-
tures group. GLCM is classified under the umbrella of 
statistical approaches. Sobel is a filtering method. Gabor 
is classified as transform-based approach. LBP focuses 
on local binary patterns, while MB-LBP extends this by 
using multi-bit representations for more detailed feature 
extraction. Sobel is an edge detection operator that fo-
cuses on gradient magnitudes in image processing. Ga-
bor is a texture analysis filter that emphasises texture 
patterns at different scales and orientations. HOG em-
phasises the capture of shape and edge information 
through gradient orientations. GLCM uses information 
such as homogeneity, contrast, energy and correlation 
derived from pixel relationships. 

In this study, different feature extraction tech-
niques were applied using various image processing 
methods for wood defect detection. First, Local Binary 
Pattern (LBP) method was used. In this method, images 

 

Original 
Dataset 

Augmentation of 
undefective samples 

using data 
augmentation 

techniques
 

Resizing images 
with a resolution of 

300×300 pixels 
Augmented 

Dataset 

Re-labelling of data 
as defective and 

undefective 

The number of defective 
samples with ten surface defects 
is 18 284, while the number of 
undefect samples is 1 992. 

The number of defective 
samples and the number 
of undefective samples 
are equal to 18 284. 

Figure 2 Data augmentation phase of data pre-processing
Slika 2. Faza porasta broja podataka u prethodnoj obradi podataka
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were converted to grayscale and LBP algorithm was ap-
plied. Radius=1 and n_points=8 were specified as pa-
rameters and 10 features were extracted for each image.

Another method, Histogram of Oriented Gradi-
ents (HOG), performs feature extraction by analyzing 
edges and orientations in images. For this method, pix-
els_per_cell=(16, 16) and cells_per_block=(2, 2) pa-
rameters are used. The HOG algorithm extracts 378 
features from each image, providing a detailed repre-
sentation of edges and orientations. The Gray Level 
Co-occurrence Matrix (GLCM) method extracts struc-
tural features such as contrast, similarity, homogeneity, 
energy and correlation in images. The parameters used 
here include distances=[5] and angles=[0], meaning 
that only horizontal neighborhood relationships are 
considered. With this method, 5 features are extracted 
from each image. Another important feature extraction 
method is Multiblock LBP (MB-LBP). By applying 
LBP in blocks, LBP histograms are extracted for each 
block. The parameters used are radius=2, n_points=4 
and block_size=6 and 10 features are obtained for each 
block. As a result, 10 MB-LBP features are extracted 
from each image. The Gabor Filter method performs 
feature extraction by analyzing different frequencies 
and orientations in the images. With this method, Ga-
bor kernels are created using sigma, theta, lambda and 
gamma parameters and applied to the image. The mean 
and standard deviation values   are extracted for each 
Gabor filter, and approximately 36 features are ob-
tained for each image in total. Finally, the Sobel Edge 
Detection method uses Sobel filters to detect edges in 
images. In this method, histograms of edge orienta-
tions are extracted and 9 features are obtained from 
each image. This is a feature known as the gradient ori-
entation histogram and provides important information 
about the orientations of the edges. These methods cre-
ate a rich feature set for wood defect detection and each 
of them increases the accuracy of the model by captur-
ing different structural and textural information in the 
images.

Min-max scaling and standardization are two 
methods commonly used in data preprocessing. Min-
max scaling transforms the values in the data set by 
compressing them into a certain range, usually between 
[0, 1]. This method is particularly preferred in distance-
based algorithms. Standardization subtracts the data 
from the mean and divides it by the standard deviation, 
making the mean of the data 0 and the standard devia-
tion 1. This method provides a more balanced mode-
ling of data at different scales and is generally suitable 
for algorithms such as linear models and support vector 
machines. In order to improve the performance of the 
model used in the study, the data were processed by 
standardization method, because this method helps the 
model to obtain more accurate and reliable results.

2.3  Classification algorithms
2.3.  Klasifikacijski algoritmi

Random Forest Classifier: Random Forest is an 
ensemble learning method that combines decision 
trees. Its advantages include that the model is resistant 
to overfitting, works well with missing data, and 
achieves high accuracy. It also has the ability to gener-
alize on datasets with a large number of features. How-
ever, the interpretability of the model is difficult and 
the computational cost can increase on large datasets. 
In addition, memory and processing power require-
ments are high (Breiman, 2001).

K Neighbors Classifier: The K-nearest neighbor 
classifier is a simple and intuitive algorithm. Its advan-
tages include the fast training phase and obtaining in-
tuitive results by performing calculations on the test 
data. It gives good results especially on small data sets. 
However, calculations are slower on large data sets, 
and performance may decrease due to the “curse of di-
mensionality” effect on high-dimensional data ( Cover 
and Hart, 1967).

Support Vector Machine (SVM): SVM is a pow-
erful algorithm that can effectively classify high-di-
mensional datasets. Its advantages are its ability to per-
form nonlinear classification and its robustness against 
outliers. It also becomes very flexible with the right 
kernel functions. However, on large data sets the train-
ing time can be long and tuning the parameters is com-
plex (Cortes and Vapnik, 1995).

Decision Tree Classifier: Decision trees create 
models that are understandable and visualizable. They 
can work with both numerical and categorical data. 
Their advantages include fast training time and sim-
plicity of the model, while their disadvantages include 
their tendency to overfit and the large differences that 
small data changes can produce (Quinlan, 1986).

Naive Bayes: Naive Bayes is an algorithm based 
on Bayes theorem and provides high accuracy, especial-
ly in problems such as text classification. The training 
time is very fast and gives effective results on small data 
sets. However, the assumption that all features are inde-
pendent of each other can affect accuracy, as it is gener-
ally not valid in real-world data sets (Lewis, 1998).

Logistic Regression: Logistic regression is a sim-
ple and fast algorithm used for binary classification. 
The outputs of the model are easily interpretable. How-
ever, its accuracy may be low in nonlinear relation-
ships and complex data sets. Also, since it is based on 
linear features only, its ability to generalize is limited 
(Hosmer et al., 2013).

GradientBoostingClassifier: Gradient Boosting 
combines weak learners to create a strong model. Its 
advantages include high accuracy and efficiency. This 
algorithm achieves effective results when hyperparam-
eter settings are set correctly. Its disadvantages are that 
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the training time is long and the risk of overfitting is 
high (Friedman, 2001). 

XGBClassifier: XGBClassifier is a fast and effec-
tive classifier developed by optimizing the Gradient 
Boosting algorithm. It offers high performance espe-
cially on large datasets and complex problems. Fast 
training time and low memory usage are its advantag-
es. However, there is a risk of overfitting and complex 
parameter settings (Chen and Guestrin, 2016).

LightGBM: LightGBM is an algorithm with par-
allel processing capabilities that focuses on large data-
sets. It offers high efficiency and speed, and works 
very effectively on large datasets. However, its effi-
ciency may be low on small datasets, and the complex-
ity of the model can sometimes make tuning difficult 
(Ke et al., 2017).

CatBoost: CatBoost is a gradient boosting library 
that can work effectively with categorical data. It 
stands out with its fast training time, low risk of over-
fitting, and strong performance. However, being a new 
method compared to other algorithms, it can some-
times lead to limited support and resources (Prok-
horenkova, 2018).

AdaBoost: AdaBoost combines weak classifiers to 
create a strong model. Its advantages include high ac-
curacy, low risk of overfitting, and flexibility. Its disad-
vantage is that the model may fail if the datasets contain 
noise and incorrect data (Freund and Schapire, 1997).

MLPClassifier: MLPClassifier is a powerful 
classifier that uses multilayer artificial neural networks. 
It works similarly to deep learning methods and can 
achieve high accuracy on very complex and large data-
sets. However, its training can take a long time and the 
model is difficult to interpret. It can also carry the risk 
of overfitting and its hyperparameter settings are com-
plex (Haykin, 1999).

For the Random Forest model, a total of 500 de-
cision trees were used with n_estimators=500, and the 
Gini coefficient and splitting criterion were determined 
by selecting criterion=’gini’. The tree depth was not 
limited with max_depth=None, and the minimum sam-
ple numbers for splitting and leaf nodes were set with 
min_samples_split=2 and min_samples_leaf=1 param-
eters. max_features=’sqrt’ was used for feature selec-
tion and bootstrap sampling was enabled with 
bootstrap=True. In the KNN (K-Nearest Neighbors) 
classifier, a single neighbor was considered with n_
neighbors=1, distance-based weighting was done by 
selecting weights=’distance’ and the KD tree algorithm 
was preferred by using algorithm=’kd_tree’. In addi-
tion, the leaf size was determined as leaf_size=10 and 
the distance metric as metric=’minkowski’.

SVM (Support Vector Machines) model was cre-
ated with C=1.0 regularization parameter, linear kernel 
was selected as kernel=’linear’ and kernel degree was 

set as degree=4. Also, scaling of kernel function was 
provided with gamma=’scale’ parameter. In Decision 
Tree classifier, Gini coefficient was selected with 
criterion=’gini’, random splitting strategy was selected 
with splitter=’random’, depth was not limited with 
max_depth=None. Splitting and leaf node parameters 
were determined with min_samples_split=2 and min_
samples_leaf=1 values; also, minimum decrease value 
was assigned for splitting with min_impurity_de-
crease=0.0.

For the Logistic Regression model, L2 regulariza-
tion was applied with penalty=’l2’, optimization algo-
rithm was determined as solver=’liblinear’, and maxi-
mum iteration number was determined as max_iter=100. 
GaussianNB(), which works with Gaussian distribution 
assumption, was used in Naive Bayes classifier. Gradi-
ent Boosting model was configured with parameters n_
estimators=500, learning_rate=0.1 and max_depth=10, 
data subsampling rate was selected as subsample=1.0. 
XGBoost model was similarly configured with parame-
ters n_estimators=500, learning_rate=0.1, max_
depth=10, min_child_weight=1, subsample=1.0, col-
sample_bytree=1.0 and objective=’binary:logistic’.

For LightGBM (LGBMClassifier), n_estima-
tors=500, learning_rate=0.1, max_depth=10, min_
child_weight=1, subsample=1.0, colsample_
bytree=1.0 and objective=’binary’ were selected; while 
n_estimators=500 and learning_rate=0.1 were used in 
the AdaBoost model. For MLPClassifier (Multi-Layer 
Perceptron), the hidden layer structure was set as hid-
den_layer_sizes=(100, 50), the maximum iteration 
number was set as max_iter=500 and random_state=42 
for randomness. All these hyperparameters were se-
lected and optimized in accordance with the dataset 
used in the study and the nature of the problem.

2.4  Evaluation metrics
2.4.  Evaluacijska mjerila 

In this article, commonly used Accuracy, Preci-
sion, Recall, F1-Score and AUC score metrics are used 
to evaluate the performance of machine learning clas-
sification algorithms. The formulas for these metrics 
are given in Equations (1-4):

  (1)

  (2)

  (3)

  (4)

Where TP, TN, FP and FN are true positive, true 
negative, false positive and false negative, respectively.
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Schematic representation of the methodology 
used in the study is shown in Figure 3.

3  RESULTS AND DISCUSSION
3.  REZULTATI I RASPRAVA

In this section, the performances of the feature 
extraction and classification algorithms for defect de-
tection are presented and interpreted. For the classifica-
tion experiments, features are obtained with different 
feature extraction techniques (LBP, HOG, GLCM, SO-
BEL, GABOR, MB-LBP). Depending on these fea-
tures, 12 different classifiers are used in the classifica-
tion process and their performances are measured. 
Hyper-parameter settings are made for all classifiers. 
The same number of classifiers and the same hyper-
parameters are used for all feature sets. Cross-valida-
tion technique is applied to increase the independence 
of the classification result and reduce its bias. For the 
cross-validation technique, the k value is determined as 
10. 10-fold cross-validation divides the data set into 10 
equal parts and uses each part of the model as a test set 
and the rest as a training set in turn. This process is re-
peated 10 times and the performance of the model is 
evaluated by averaging all results. This method pro-

vides more generalizable and reliable results. The re-
sults in Tables 2-8 are the average results obtaind after 
cross validation application. The performances of LBP 
and the classification algorithms in detecting defective 
wood are shown in Table 2.

According to this table, Random Forest Classifier 
is the algorithm that gives the best results in terms of 
performance metrics. This model has high values in all 
metrics, especially AUC, precision, sensitivity, F1-
Score, and its accuracy values are quite high with 96.75 
%. This shows that it can successfully classify data using 
LBP features. The algorithms with the second highest 
performance are Gradient Boosting Classifier and XGB-
Classifier models. Among the classification algorithms 
on LBP features, LBP Random Forest Classifier has the 
highest accuracy rate of 96.75 % and this algorithm is 
highly effective in classifying data accurately. Other al-
gorithms such as LBP Gradient Boosting Classifier 
96.56 % and XGB Classifier 96.28 % also present high 
accuracy values, indicating that the data can be classi-
fied successfully. LBP CatBoost 95.39 % also has a very 
high accuracy rate, but is slightly lower than the others. 

Random Forest Classifier has a high accuracy of 
88.38 %. CatBoost comes right behind, achieving an 
accuracy of 86.25 %. Gradient Boosting Classifier, 

Figure 3 Schematic representation of methodology used in the study
Slika 3. Shematski prikaz metodologije primijenjene u istraživanju

Table 2 Performances of classification algorithms on LBP features
Tablica 2. Rezultati klasifikacijskih algoritama primijenjenih za LPB svojstva

Algorithms
Algoritmi AUC Precision

Preciznost
Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

LBP RandomForestClassifier 0.9851 0.9680 0.9675 0.9675 0.9675
LBP KNeighborsClassifier 0.9198 0.9217 0.9199 0.9198 0.9199
LBP Support Vector Machine 0.8737 0.8701 0.8388 0.8353 0.8388
LBP DecisionTreeClassifier 0.9048 0.9081 0.9050 0.9047 0.9050
LBP Naive Bayes 0.8484 0.8319 0.8063 0.8025 0.8063
LBP LogisticRegression 0.8595 0.8504 0.8226 0.8190 0.8226
LBP GradientBoostingClassifier 0.9839 0.9661 0.9656 0.9656 0.9656
LBP XGBClassifier 0.9829 0.9631 0.9628 0.9628 0.9628
LBP LightGBM 0.9750 0.9289 0.9262 0.9261 0.9262
LBP CatBoost 0.9816 0.9546 0.9539 0.9539 0.9539
LBP AdaBoost 0.8966 0.8642 0.8398 0.8370 0.8398
LBP MLPClassifier 0.9048 0.8729 0.8458 0.8429 0.8458
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XGBoost and MLP Classifier also have high accuracy 
scores. SVM and Naive Bayes achieve good accuracy 
if other performance metrics are put aside, but are 
slightly inferior to the best performers. K Neighbors 
Classifier, Decision Tree Classifier, and LightGBM 
achieve lower accuracy than other models.

In the experiments conducted on GLCM features, 
the Random Forest classifier gave the most successful 

results. The accuracy of Gradient Boosting and Ran-
dom Forest classifiers is over 93 %. The XGB classifier 
achieved a value close to the most successful. Logistic 
Regression classifier showed the most unsuccessful re-
sult with an accuracy rate of 82.94 %.

Other algorithms also have high accuracy rates on 
SOBEL features such as Random Forest Classifier 88.44 
%, Gradient Boosting Classifier 87.86 %, and XGB-

Table 3 Performances of classification algorithms on HOG features
Tablica 3. Rezultati klasifikacijskih algoritama primijenjenih za HOG svojstva

Algorithms
Algoritmi AUC Precision

Preciznost
Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

HOG RandomForestClassifier 0.9198 0.8903 0.8838 0.8834 0.8838
HOG KNeighborsClassifier 0.8232 0.8234 0.8232 0.8232 0.8232
HOG Support Vector Machine 0.8496 0.8451 0.8350 0.8338 0.8350
HOG DecisionTreeClassifier 0.8110 0.8118 0.8111 0.8110 0.8111
HOG Naive Bayes 0.8735 0.8433 0.8342 0.8331 0.8342
HOG LogisticRegression 0.8488 0.8432 0.8338 0.8326 0.8338
HOG GradientBoostingClassifier 0.9138 0.8839 0.8775 0.8770 0.8775
HOG XGBClassifier 0.9124 0.8760 0.8656 0.8646 0.8656
HOG LightGBM 0.9084 0.8726 0.8595 0.8582 0.8595
HOG CatBoost 0.9111 0.8750 0.8625 0.8614 0.8625
HOG AdaBoost 0.8918 0.8696 0.8517 0.8499 0.8517
HOG MLPClassifier 0.8940 0.8764 0.8552 0.8531 0.8552

Table 4 Performances of classification algorithms on GLCM features
Tablica 4. Rezultati klasifikacijskih algoritama primijenjenih za GLCM svojstva 

Algorithms
Algoritmi AUC Precision

Preciznost
Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

GLCM RandomForestClassifier 0.9653 0.9415 0.9389 0.9388 0.9389
GLCM KNeighborsClassifier 0.8906 0.8918 0.8907 0.8906 0.8907
GLCM Support Vector Machine 0.8866 0.8762 0.8441 0.8407 0.8441
GLCM DecisionTreeClassifier 0.8735 0.8759 0.8736 0.8733 0.8736
GLCM Naive Bayes 0.8831 0.8557 0.8334 0.8362 0.8384
GLCM LogisticRegression 0.8729 0.8510 0.8294 0.8267 0.8294
GLCM GradientBoostingClassifier 0.9609 0.9352 0.9330 0.9330 0.9330
GLCM XGBClassifier 0.9592 0.9250 0.9217 0.9215 0.9217
GLCM LightGBM 0.9499 0.8993 0.8900 0.8894 0.8900
GLCM CatBoost 0.9546 0.9075 0.9006 0.9002 0.9006
GLCM AdaBoost 0.9034 0.8775 0.8523 0.8498 0.8523
GLCM MLPClassifier 0.9044 0.8808 0.8578 0.8557 0.8578

Table 5 Performances of classification algorithms on SOBEL features
Tablica 5. Rezultati klasifikacijskih algoritama primijenjenih za SOBEL svojstva

Algorithms
Algoritmi AUC Precision

Preciznost
Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

SOBEL RandomForestClassifier 0.9326 0.8899 0.8844 0.8840 0.8844
SOBEL KNeighborsClassifier 0.8303 0.8304 0.8303 0.8303 0.8303
SOBEL Support Vector Machine 0.8209 0.8140 0.7834 0.7730 0.7834
SOBEL DecisionTreeClassifier 0.8078 0.8081 0.8078 0.8078 0.8078
SOBEL Naive Bayes 0.8424 0.8156 0.7776 0.7706 0.7776
SOBEL LogisticRegression 0.7248 0.7172 0.6935 0.6868 0.6935
SOBEL GradientBoostingClassifier 0.9256 0.8838 0.8786 0.8782 0.8786
SOBEL XGBClassifier 0.9264 0.8834 0.8777 0.8773 0.8777
SOBEL LightGBM 0.9226 0.8750 0.8671 0.8664 0.8671
SOBEL CatBoost 0.9271 0.8803 0.8732 0.8726 0.8732
SOBEL AdaBoost 0.8880 0.8502 0.8332 0.8311 0.8332
SOBEL MLPClassifier 0.9104 0.8754 0.8586 0.8571 0.8586
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Classifier 87.77 %. Although Naive Bayes performs 
slightly lower than the others, with an accuracy rate of 
77.76 %, it still has a very acceptable level of accuracy.

In the classification made on Gabor features, 
Gradient Boosting Classifier and XGBClassifier algo-
rithms stand out by achieving a high accuracy rate of 
95.23 % and 94.60 %. At the same time, Random For-
est Classifier also shows a very successful result with 
94.96 %. Other algorithms also have high accuracy 
rates, indicating that Gabor features allow effective 
classification.

In the classification processes performed on MB 
LBP features, Random Forest Classifier showed the 
highest performance with 89.58 % in terms of accuracy 
and also achieved successful results in other metrics. 
The Gradient Boosting Classifier ranked second with 
an accuracy of 88.86 %, while XGBClassifier and Cat-
Boost performed well with an accuracy of 87.77 % and 
86.03 %, respectively. LightGBM provided a satisfac-
tory result with an accuracy of 84.07 %. In general, 
Random Forest provided the best results among these 
classification algorithms.

A “hybrid feature” is a feature or variable that is 
usually created by combining different types of fea-

tures or information. This type of feature is usually cre-
ated by combining information from two or more dif-
ferent sources. By combining all the features extracted 
in the study, hybrid features are created and their per-
formance is examined.

The classification performances of the classifiers 
on the feature set obtained by combining all feature ex-
traction methods are given in Table 8.

In the combined features, Gradient Boosting 
Classifier gives the highest accuracy with 95.16 % ac-
curacy. XGB Classifier gives very successful results 
with 95.13 %. LightGBM and CatBoost had an accu-
racy of 94.70 % and 94.71 %, respectively. It has been 
observed that hybrid learning provides an increase in 
accuracy according to some feature extractions.

The accuracy values of all feature extraction and 
classification algorithms are given in Table 9.

A shematic view of Table 9 is also given in Fig-
ure 4. As it can be seen in Figure 4, classification algo-
rithms RandomForestClassifier, GradientBoosting-
Classifier and XGBClassifier stand out in terms of total 
performance indicators.

The fact that certain methods perform better than 
others can be attributed to the characteristics of the fea-

Table 6 Performances of classification algorithms on GABOR features
Tablica 6. Rezultati klasifikacijskih algoritama primijenjenih za GABOR svojstva

Algorithms
Algoritmi AUC Precision

Preciznost
Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

GABOR RandomForestClassifier 0.9753 0.9521 0.9496 0.9495 0.9496
GABOR KNeighborsClassifier 0.9011 0.9022 0.9012 0.9011 0.9012
GABOR Support Vector Machine 0.9048 0.8861 0.8622 0.8600 0.8622
GABOR DecisionTreeClassifier 0.8866 0.8880 0.8866 0.8865 0.8866
GABOR Naive Bayes 0.8933 0.8766 0.8580 0.8562 0.8580
GABOR LogisticRegression 0.8918 0.8789 0.8586 0.8566 0.8586
GABOR GradientBoostingClassifier 0.9765 0.9543 0.9523 0.9522 0.9523
GABOR XGBClassifier 0.9756 0.9486 0.9460 0.9459 0.9460
GABOR LightGBM 0.9658 0.9216 0.9146 0.9142 0.9146
GABOR CatBoost 0.9704 0.9318 0.9265 0.9262 0.9265
GABOR AdaBoost 0.9157 0.8954 0.8770 0.8756 0.8770
GABOR MLPClassifier 0.9178 0.8989 0.8802 0.8788 0.8802

Table 7 Performances of classification algorithms on MB-LBP features
Tablica 7. Rezultati klasifikacijskih algoritama primijenjenih za MB-LBP svojstva

Algorithms
Algoritmi

AUC Precision
Preciznost

Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

MB LBP RandomForestClassifier 0.9397 0.8984 0.8958 0.8956 0.8958
MB LBP KNeighborsClassifier 0.8307 0.8321 0.8308 0.8306 0.8308
MB LBP Support Vector Machine 0.7983 0.8025 0.7660 0.7586 0.7660
MB LBP DecisionTreeClassifier 0.8181 0.8201 0.8101 0.8178 0.8181
MB LBP Naive Bayes 0.7988 0.7961 0.7584 0.7504 0.7584
MB LBP LogisticRegression 0.7995 0.7742 0.7558 0.7516 0.7558
MB LBP GradientBoostingClassifier 0.9335 0.8907 0.8886 0.8844 0.8886
MB LBP XGBClassifier 0.9294 0.8802 0.8777 0.8775 0.8777
MB LBP LightGBM 0.9121 0.8486 0.8407 0.8398 0.8407
MB LBP CatBoost 0.9240 0.8638 0.8603 0.8600 0.8603
MB LBP AdaBoost 0.8365 0.7990 0.7673 0.7609 0.7673
MB LBP MLPClassifier 0.8575 0.8098 0.7893 0.7794 0.7839
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ture extractors and classifiers used. LBP is very effec-
tive in capturing local patterns in the surface texture, 
which plays a critical role in detecting defects in tex-
ture-dense materials such as wood. This feature pro-

vides high performance, especially when combined 
with a powerful classifier such as RandomForestClas-
sifier. On the other hand, HOG is successful in measur-
ing edge density, but may be limited in recognizing 

Table 8 Performances of classification algorithms on hybrid features
Tablica 8. Rezultati klasifikacijskih algoritama primijenjenih na hibridna svojstva

Algorithms
Algoritmi

AUC Precision
Preciznost

Recall
Opoziv

F1-Score
F1-rezultat

Accuracy
Točnost

RandomForestClassifier 0.9778 0.9420 0.9364 0.9362 0.9364
KNeighborsClassifier 0.8985 0.8986 0.8986 0.8985 0.8986
Support Vector Machine 0.9262 0.9087 0.8896 0.8883 0.8896
DecisionTreeClassifier 0.8755 0.8762 0.8756 0.8755 0.8756
Naive Bayes 0.8822 0.8843 0.8645 0.8627 0.8645
LogisticRegression 0.9036 0.8886 0.8678 0.8660 0.8678
GradientBoostingClassifier 0.9820 0.9545 0.9516 0.9515 0.9516
XGBClassifier 0.9830 0.9538 0.9513 0.9513 0.9513
LightGBM 0.9811 0.9492 0.9470 0.9469 0.9470
CatBoost 0.9800 0.9504 0.9471 0.9470 0.9471
AdaBoost 0.9489 0.9058 0.8927 0.8918 0.8927
MLPClassifier 0.9581 0.9168 0.9072 0.9068 0.9072

Table 9 Accuracy values of all feature extraction and classification algorithms
Tablica 9. Točnost svih algoritama ekstrakcije i klasifikacije svojstava

Algorithms / Algoritmi LBP HOG GLCM SOBEL GABOR MB-LBP HYBRID
RandomForestClassifier 0.9675 0.8838 0.9389 0.8844 0.9496 0.8958 0.9364
KNeighborsClassifier 0.9199 0.8232 0.8907 0.8303 0.9012 0.8308 0.8986
Support Vector Machine 0.8388 0.8350 0.8441 0.7834 0.8622 0.7660 0.8896
DecisionTreeClassifier 0.9050 0.8111 0.8736 0.8098 0.8866 0.8181 0.8756
Naive Bayes 0.8063 0.8342 0.8384 0.7776 0.8580 0.7584 0.8645
LogisticRegression 0.8226 0.8338 0.8294 0.6935 0.8586 0.7558 0.8678
GradientBoostingClassifier 0.9656 0.8775 0.9330 0.8786 0.9523 0.8886 0.9516
XGBClassifier 0.9628 0.8656 0.9217 0.8777 0.9460 0.8777 0.9513
LightGBM 0.9262 0.8595 0.8900 0.8671 0.9146 0.8407 0.9470
CatBoost 0.9539 0.8625 0.9006 0.8732 0.9265 0.8603 0.9471
AdaBoost 0.8398 0.8517 0.8523 0.8332 0.8770 0.7673 0.8927
LMLPClassifier 0.8458 0.8552 0.8578 0.8586 0.8802 0.7879 0.9072
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Figure 4 Accuracy values of classification algorithms
Slika 4. Točnost klasifikacijskih algoritama
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Figure 5 Complexity matrix of the most successful feature extraction and classification algorithms: a) LBP Random Forest 
Classifier, b) HOG Random Forest Classifier, c) GLCM Random Forest Classifier, d) SOBEL Random Forest Classifier, e) 
GABOR Gradient Boosting Classifier, f) MB LBP Random Forest Classifier, g) Hybrid Classifier
Slika 5. Matrica složenosti najuspješnijih algoritama ekstrakcije i klasifikacije svojstava: a) LBP Random Forest klasifikator, 
b) HOG Random Forest klasifikator, c) GLCM Random Forest klasifikator, d) SOBEL Random Forest klasifikator, e) 
GABOR Gradient Boosting klasifikator, f) MB LBP Random Forest klasifikator, g) hibridni klasifikator
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finer defects on the wood surface. Similarly, GLCM is 
effective in describing texture patterns, but may be in-
sufficient when more complex features are needed in 
high-dimensional datasets. While RandomForestClas-
sifier stands out with its ability to handle high-dimen-
sional data and reduce overfitting thanks to its ensem-
ble of decision trees, other ensemble learning 
algorithms such as Gradient Boosting, XGBoost, and 
CatBoost also show high performance for similar rea-
sons. Simpler modeling techniques such as Naive 
Bayes and Logistic Regression may show low accura-
cy in more complex datasets, and may be limited in 
understanding fine details such as wood surface de-
fects. Although hybrid combinations aim to provide a 
wider information pool by combining multiple feature 
extractors, in this study, it was observed that hybrid 
features could not overcome the effect of individual 
features. This situation reveals that excessive complex-
ity and redundancy of some features can limit perfor-
mance. As a result, the obtained performance differ-
ences can be attributed to the internal properties of 
both feature extractors and classifiers and can be ex-
plained more clearly in this context.

The confusion matrices of the algorithms show-
ing the most successful results for each feature extrac-
tion method on the test set are shown in Figure 5.

In this research, six different feature extraction 
methods are used and the performances of the same 12 
different classifiers are analyzed in each feature extrac-
tion. In the experiments, it is observed that the LBP 
method made the most effective feature extraction. 
Over 90 % accuracy is achieved with tree-based algo-
rithms on the features extracted with the LBP method. 
Additionally, the most successful performance of the 
study is achieved with the LBP-Random Forest combi-
nation. The worst performances are obtained for all 
classifiers in the features extracted with MB-LBP, SO-
BEL and HOG. Even tree-based ensemble classifiers 
could not reach 90 % accuracy. GABOR and GLCM 
extracted the most effective features after LBP.

In terms of classifier performance, tree-based 
classifiers such as Random Forest, Gradient Boosting 
and XgBoosting have achieved more successful results 
for all feature extraction methods in detecting defec-
tive wood.

The results obtained in this study show remarka-
ble success compared to previous studies in the litera-
ture in wood defect detection. Pölzleitner and Schwing-
shakl (1992) achieved 95 % accuracy using manual 
wood classification and feature vectors, but manual 
methods are known to be less scalable compared to au-
tomated approaches. Zhang et al. (2015) achieved 92 
% accuracy using PCA and compressed sensing meth-
ods, but the performance may be limited by the inabil-
ity of PCA to provide sufficiently robust features in 

complex datasets. YongHua and Jin-Cong (2015) 
achieved 91.83 % accuracy with texture-based features 
such as GLCM and Tamura texture, but these methods 
do not capture as much detailed information as more 
modern feature extractors.

In a more advanced study, Li et al. (2017) achieved 
94 % accuracy with LDA and compressed sensor imag-
es, while Li et al. (2019) achieved 93 % recall with LBP 
and local differential excitation methods. These meth-
ods, although focusing on texture analysis, were limited 
in distinguishing more complex surface defects. Urbo-
nas et al. (2019) achieved 96.1 % accuracy using Faster 
R-CNN, and Shi et al. (2020) achieved 95.31 % accu-
racy with Multi-Channel Mask R-CNN. Although these 
deep learning-based methods provide high accuracy, 
their computational density and larger dataset require-
ments stand out as a disadvantage.

The combination of LBP and Random Forest 
used in this study has shown a competitive success 
with most of the methods in the literature and has 
reached an accuracy rate of 96.75 %. In particular, the 
success of LBP in capturing local texture patterns and 
the ability of the Random Forest algorithm to process 
high-dimensional data have made this result possible. 
In addition, the evaluation of hybrid feature combina-
tions has provided an in-depth analysis, unlike other 
studies in the literature, but it has been observed that 
these combinations do not contribute to the perfor-
mance increase. This situation reveals that excessive 
complexity may not be beneficial in certain cases. In 
general, the results of this study provide a strong alter-
native to the existing methods in the literature and pro-
vide both high accuracy and efficiency in the field of 
wood defect detection.

Since wood is a heterogeneous material, not eve-
ry feature extraction method may give good results. 
The focus of this study is to find the most suitable fea-
ture extraction method to detect wood defects and to 
increase the binary classification performance with the 
obtained features. In this context, studies have been 
conducted to present the most suitable solution by con-
sidering the effects of different methods on the classifi-
cation success.

LBP (Local Binary Pattern) has been used as a 
successful feature extraction method for wood defect 
detection. Wood contains textural differences and sub-
tle defects due to its heterogeneous structure. LBP cap-
tures subtle textural changes by comparing each pixel 
with its surrounding neighboring pixels and thus de-
tects subtle defects. The success of the method is due to 
the effective modeling of distinct texture structures on 
the wood surface and the ability to correctly identify 
small defects. The simple and efficient structure of 
LBP facilitates working with large data sets and in-
creases the efficiency of the model.
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4  CONCLUSIONS
4.  ZAKLJUČAK

This study aimed to evaluate the performance of 
different feature extraction methods and classification 
algorithms for wood defect detection. Using different 
feature extraction methods (LBP, HOG, GLCM, 
 SOBEL, GABOR and MB-LBP), with various classifi-
cation algorithms (RandomForestClassifier, KNeigh-
borsClassifier, Support Vector Machine, Deci sion Tree-
Classifier, Naive Bayes, LogisticRegression, 
Gra dientBoostingClassifier, XGBClassifier, Light-
GBM, CatBoost, AdaBoost and MLPClassifier) has 
been tested for their defect detection capabilities. 
Based on the experiments carried out, the following 
conclusions can be drawn from this article: It has been 
observed that the LBP method extracts the most effec-
tive features in detecting defective wood. In addition, 
based on the classification results, GABOR and GLCM 
methods achieved very successful feature extraction. 
The most successful classification result is achieved by 
the Random Forest algorithm on LBP features. The 
performances of Gradient Boosting and Xgboosting 
classifiers have successful accuracy rates following the 
Random Forest classifier. In all feature sets, tree-based 
augmented ensemble methods are more successful 
than other classical machine learning algorithms. Al-
though SOBEL, MB-LBP and HOG features are less 
effective than other methods, they provided successful 
results for detecting defective wood. Accuracy perfor-
mance varies between 75 % and 97 % using all feature 
extraction methods and classifier combinations. In ex-
periments performed by combining all features, the ac-
curacy rate did not increase compared to the LBP-Ran-
dom Forest combination result, but increased compared 
to other combinations. The most successful classifica-
tion value obtained in the study is found to be 96.75 %.

In conclusion, this study evaluated how different 
feature extraction methods and classification algo-
rithms perform in wood defect detection applications. 
These results provide valuable information that can be 
used in industrial defect detection and similar applica-
tions. According to the results obtained from the find-
ings, the LBP-Random Forest model is expected to 
give successful results when used in industrial applica-
tions for the detection of defective woods.

Different feature extraction methods and differ-
ent classification algorithms may be used in these fields 
of study in the future. Studies on wood defect detection 
can be carried out with deep learning methods. In addi-
tion, wood defect detection systems can be developed 
by extracting features with machine deep learning 
methods and making classifications with machine 
learning classification algorithms. Other feature ex-
traction methods not used in this study are left to future 

studies. Studies on classifying wood defect types using 
this dataset is also left to future studies. In the future, it 
will be inevitable to ensure quality standards in pro-
duction without using computer vision and artificial 
intelligence learning models in wood quality control 
processes.

There are several suggestions for future work in 
the field of deep learning. In particular, advanced archi-
tectures such as Vision Transformers (ViT) can improve 
model performance by performing robust feature extrac-
tion on large datasets. In addition, super-resolution 
methods can extract more details from low-resolution 
images, making it easier to detect small defects. Genera-
tive Adversarial Networks (GANs) can improve the 
learning capacity of the model by providing data aug-
mentation in cases with few labeled data. Techniques 
such as attention mechanisms can also allow the model 
to focus on important areas in the image, allowing for 
more precise detection of small defects in particular.
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