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ABSTRACT • Current quality inspection of edge banding in panel furniture heavily relies on manual screen-
ing, which is labor-intensive, subjective, and inefficient. To address this challenge, we propose a YOLOv7-based 
visual inspection system by integrating machine vision and deep learning. A dataset containing 1,887 images of 
six defect types (e.g., open glue, chipping, uneven trimming) was constructed, with annotations generated via La-
belImg. Data augmentation strategies (rotation, scaling, cropping) were applied to enhance model robustness. The 
YOLOv7-Tiny model achieved a mean average precision (mAP) of 74.8 % at 57.63 FPS, outperforming traditional 
methods and demonstrating superior speed-accuracy trade-offs. Experimental results on real-time industrial cam-
era data validated the system’s capability to detect defects with high precision (82.1 %) and recall (75.4 %). This 
framework significantly reduces production costs and provides a scalable solution for automated quality control 
in furniture manufacturing.
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SAŽETAK • Današnja kontrola kvalitete rubnih traka pločastog namještaja uvelike se oslanja na ručnu provjeru, 
što je radno intenzivno, subjektivno i neučinkovito. Kako bismo riješili taj problem, predlažemo sustav vizualne 
kontrole utemeljene na YOLOv7 sustavu koji integrira strojni vid i duboko učenje. Izrađen je skup podataka koji 
sadržava 1887 slika šest vrsta grešaka (npr. vidljivo ljepilo, krhotine, neravnomjerno obrezivanje) s napomenama 
generiranim putem LabelImga. Primijenjene su strategije proširenja podataka (rotacija, skaliranje, izrezivanje) 
kako bi se poboljšala robusnost modela. Model YOLOv7-Tiny postigao je prosječnu preciznost (mAP) od 74,8 % 
pri 57,63 FPS, nadmašivši tradicionalne metode i pokazavši superiorne kompromise brzine i točnosti. Eksperi-
mentalni rezultati podataka dobivenih industrijskom kamerom u stvarnom vremenu potvrdili su sposobnost su-
stava da otkrije greške s visokom preciznošću (82,1 %) i opozivom (75,4 %). Taj okvir znatno smanjuje troškove 
proizvodnje i daje skalabilno rješenje za automatiziranu kontrolu kvalitete u proizvodnji namještaja.
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1 	 INTRODUCTION
1. 	UVOD

Edge banding plays a pivotal role in modern panel 
furniture manufacturing, contributing not only to the 
aesthetics of the furniture but also to the durability and 
structural integrity of the finished product. However, the 
edge banding process is often accompanied by problems 
such as collapsing edges, glue leakage, and uneven trim-
ming, which can directly affect both the appearance and 
the functionality of the furniture (Lu et al., 2021). These 
defects are especially critical as they compromise the 
consumer’s perception of quality and can lead to prema-
ture product degradation (Xiong et al., 2023a). The 
global panel furniture market was valued at $210 billion 
in 2022, and as consumer expectations continue to rise, 
there is a growing demand for stringent quality control 
throughout the production process. Traditional defect 
detection methods, predominantly relying on manual la-
bor, are not only labor-intensive but also prone to sub-
jectivity. In the furniture industry in China, for instance, 
manual inspection accounts for 30-40 % of the total pro-
duction cost (Li et al., 2021), with defect escape rates 
exceeding 15 % due to human fatigue and inconsistent 
inspection standards (Wang et al., 2022).

In response to these challenges, recent advances 
in machine vision and deep learning have significantly 
revolutionized industrial quality inspection, particu-
larly in defect detection. Machine vision technology, 
which leverages cameras and computational tools to 
visually inspect products, has been widely adopted 
across industries for its ability to perform automated, 
objective assessments (Wang et al., 2023; Peng et al., 
2025). Early research on industrial defect detection re-
lied heavily on classical machine learning algorithms 
such as Support Vector Machines (SVM) and Random 
Forests for defect classification (Czimmermann et al., 
2020). However, these methods faced limitations when 
it came to detecting complex surface defects, particu-
larly in materials like wood, which exhibit intricate 
texture variations (Xiong et al., 2023b). The advent of 
deep learning frameworks, particularly Convolutional 
Neural Networks (CNNs), marked a turning point by 
enabling automatic feature extraction and significantly 
enhancing detection accuracy (Alzubaidi et al., 2021).

For instance, Faster R-CNN, a popular deep learn-
ing-based model, achieved a mean average precision 
(mAP) of 71.5 % in solid wood defect detection (Fan et 
al., 2019), while YOLOv4 demonstrated real-time de-
fect detection capabilities for structural wood with a 
speed of 52 FPS (Wang et al., 2021). However, while 
these models show great promise, research specific to 
edge banding defect detection remains sparse. Existing 
methods are often limited by two significant challenges: 
the trade-off between speed and accuracy and the scar-
city of high-quality training data. Many studies prior-

itize accuracy at the expense of real-time performance, 
which makes them impractical for high-speed produc-
tion lines (Redmon et al., 2016). Furthermore, the lack 
of public datasets focused on edge banding defects often 
leads to training on small sample sizes, making models 
susceptible to overfitting (Tao et al., 2022).

To address these challenges, this study introduces 
the first YOLOv7-Tiny-based visual inspection frame-
work designed specifically for edge banding defect de-
tection. The proposed method offers several innovative 
contributions:

a. A curated dataset of 1,887 images covering six 
distinct defect types (e.g., glue leakage, chipping), with 
data augmentation techniques including rotation and 
scaling to increase model robustness.

b. The deployment of the YOLOv7-Tiny model, 
which incorporates optimized anchor boxes and 
RepVGG modules, achieving a mAP of 74.8 % at a 
real-time detection speed of 57.63 FPS. This perfor-
mance surpasses previous models such as YOLOv4 
(68.2 % mAP) and Faster R-CNN (71.5 % mAP).

c. A real-time industrial camera integration sys-
tem validated across four production lines, significant-
ly reducing defect escape rates to below 5 %.

Beyond these practical contributions, the present 
study also makes several academic advancements. 
First, it represents the first systematic effort to con-
struct a large-scale dataset specifically targeting edge 
banding defects, thereby alleviating the long-standing 
problem of limited training samples in this domain. 
Second, by combining data augmentation strategies 
with a lightweight YOLOv7-Tiny architecture, the 
study demonstrates a feasible approach for achieving 
both high detection accuracy and real-time perfor-
mance, providing a reference model for the digital 
transformation of small- and medium-sized furniture 
enterprises. Finally, from a broader perspective, the 
proposed framework contributes to the academic liter-
ature by offering a transferable methodological para-
digm for defect detection in high-texture-complexity 
materials such as wood. This not only advances the 
theoretical understanding of defect detection in chal-
lenging visual contexts but also opens new avenues for 
cross-material and cross-industry applications of deep 
learning in manufacturing quality control.

2 	 MATERIALS AND METHODS
2. 	MATERIJALI I METODE

2.1 	 Test samples and tools
2.1. 	Ispitni uzorci i alati

2.1.1 	Test sample
2.1.1. 	Ispitni uzorci

To minimize the influence of subjective factors, 
the board samples were selected randomly, adhering to 
established statistical principles to ensure they are rep-
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resentative of the overall production. The sampling 
process took into account various factors, including the 
diversity of production batches, production lines, and 
production times. This approach ensured that all criti-
cal features of the product appearance were sufficiently 
covered, enabling comprehensive inspection. The fol-
lowing methodology was applied:

a. Sample Size and Selection Method: The total 
number of samples selected was 500, with 400 samples 
allocated for training the network model and 100 sam-
ples reserved for validating the model performance. 
Samples were randomly chosen from four different 
production lines, all equipped with automatic edge 
banding machines. To account for variability, samples 
were taken at intervals of 2 hours and 10 days, with 20 
samples selected from each batch.

b. Recording of Sample Information: Detailed in-
formation for each sample was systematically record-
ed, including production date, batch number, model, 
specifications, and other relevant attributes, in line 
with the established sampling methodology. This com-
prehensive data logging ensured transparency and 
traceability throughout the testing process.

c. Appearance Quality Inspection: The samples 
were then sent to the laboratory for appearance quality 
testing, adhering to the specific testing items and stand-
ards defined in Table 1. The inspection followed objec-
tive, scientific, and rigorous principles to evaluate the 
visual and structural quality of the edge banding.

2.1.2 	Tools and equipment
2.1.2. 	Alati i oprema

The following tools and equipment were em-
ployed for the testing process:

a. Edge Banding Equipment: The Himile KAL 
350 automatic straight-line edge banding machine was 
used for applying edge banding to the board samples.

b. Defect Detection Tools: A vernier caliper, tape 
measure, spirit level, and low magnification glass were 
used for initial defect inspection, measurement, and as-
sessment of edge banding quality.

c. Test Equipment: The testing was conducted us-
ing an industrial camera system, and the data process-
ing was performed on a computing system running the 
Windows operating system, with an RTX 3060Ti-12G 
graphics card to facilitate high-performance comput-
ing. The deep learning framework employed for model 
development and testing was Pytorch, and the pro-
gramming language used was Python.

2.1.3 	Machine vision and YOLOv7 algorithm
2.1.3. 	Strojni vid i YOLOv7 algoritam

Machine vision, a technology rooted in computer 
theory, has become an essential tool for detecting and 
quantifying surface defects in products (Zhu et al., 

2023). Since its introduction, machine vision has been 
widely applied in industrial defect detection to describe 
the fundamental components of a visual surface defect 
detection system, including the image acquisition 
module, image processing module, image analysis 
module, data management system, and man-machine 
interface (Yu et al., 2024; Golnabi et al., 2007). These 
modules collectively enable the processing of images 
captured by machine vision, which are then trained us-
ing deep learning frameworks to facilitate production 
testing (Ren et al., 2024).

Machine vision systems offer several advantages 
over traditional image acquisition methods. They use a 
single camera to perform multiple tasks simultaneous-
ly, enabling rapid and efficient detection of both sta-
tionary and moving objects (Sheng et al., 2024). Fur-
thermore, machine vision can analyze various image 
types, such as text, lines, and graphics, while recogniz-
ing diverse attributes, including color, shape, contrast, 
and texture. Another significant benefit of machine vi-
sion is its ability to track the movement and changes of 
objects, thus enabling dynamic detection and analysis 
(Zhang et al., 2024). The combination of image pro-
cessing and machine learning techniques allows for the 
precise identification, location, measurement, and de-
tection of objects, thus enabling automation and intel-
ligence in industrial applications (Wang et al., 2021).

Building upon man, deep learning has further en-
hanced surface defect detection. Deep learning technol-
ogies, particularly Convolutional Neural Networks 
(CNNs), allow for more efficient and accurate identifica-
tion of object features, distinguishing abnormal features 
from typical ones (Zhang et al., 2021). Unlike tradition-
al machine learning techniques, which rely on manual 
feature extraction, deep learning autonomously extracts 
relevant features from images. The YOLO (You Only 
Look Once), a prominent target detection model, inte-
grates classification, localization, and detection within a 
single framework (Redmon et al., 2016). It calculates 
the bounding box coordinates of the target and the prob-
ability of each category in the image, significantly im-
proving computational efficiency and enabling real-time 
detection in production environments (Li et al., 2024).

YOLOv7 is designed to enhance both detection 
speed and accuracy. The network architecture consists 
of three primary components: the input layer, the back-
bone layer, and the neck & head layers. The input im-
age is first preprocessed into a 640×640×3 format be-
fore being passed through the backbone network, 
which extracts features. These features are further pro-
cessed by the neck & head layers to generate detection 
results. YOLOv7 employs advanced convolutional 
structures such as RepVGG to improve feature extrac-
tion and analysis. The specific network architecture is 
shown in Figure 1.
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To further enhance detection performance, the 
Anchor-based method and structural modifications, 
such as expanded feature channels and additional mod-
el branches, are employed to improve the network’s 
reasoning speed. The network also introduces the Ex-
tend-Elan module to optimize learning capabilities by 
controlling gradient paths and capturing more feature 
details. YOLOv7 offers several model variants based 
on different requirements. In this study, the YOLOv7-
Tiny model was used to evaluate its defects in edge 
banding plates.

2.2 	 Principle and process
2.2. 	Načelo i proces
2.2.1 	Standards for inspection of 

appearance quality
2.2.1. 	Standardi za kontrolu kvalitete izgleda

In recent years, there has been an increasing fo-
cus within the furniture industry on both the production 
process and the environmental sustainability of prod-
ucts. Consequently, stringent control over production 
quality is essential to ensure the final product meets the 
required standards for both functionality and aesthetics 
(Zhou et al., 2024). When establishing standards for 
the appearance quality of edge panels, it is important to 
consider various factors such as material composition, 
structural characteristics, physical and mechanical 
properties, durability, and environmental impact.

The inspection standards are derived from a com-
bination of national, industry-specific, and enterprise-
specific guidelines. Key national standards include 
GB/T 3324-2017 “General Technical Conditions for 
Wood Furniture,” GB/T 4897-2015 “Fiberboard,” and 
T/CNFPIA 3016-2021 “Quality Requirements for 
Wood-Based Customized Household Panel Edge.” 
These standards specify the criteria for evaluating the 
appearance quality of wood-based panels, outlining the 
testing methods and evaluation techniques. Industry 
standards, based on national guidelines, account for the 
distinct characteristics of various industries, while en-
terprise-specific standards address the unique require-
ments of individual manufacturers. In addition to these 
formal standards, factors such as production cost, mar-
ket demand, and product use must also be considered 
when formulating inspection criteria.

The assessment of edge banding appearance qual-
ity can generally be divided into two main methods: 
qualitative and quantitative. Qualitative methods include 
visual inspection, equipment-based inspections, and 
comprehensive inspection methods, while quantitative 
methods encompass hardness measurements, dimen-
sional analysis, and optical testing (Xiong et al., 2023). 
These combined approaches allow for a comprehensive 
evaluation of the product’s appearance quality.

Surface quality inspection in the wood industry is 
particularly challenging due to the variability in wood 

Figure 1 YOLOv7 network architecture diagram
Slika 1. Dijagram YOLOv7 mrežne arhitekture
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shape and background texture, as well as the stringent 
compatibility standards that must be met. To overcome 
the challenge of limited training samples, machine vi-
sion-based deep learning approaches are increasingly 
being used to leverage transfer learning. Target detec-
tion networks are employed to identify and categorize 
defects in the surface of edge banded components.

Before applying machine vision technologies to 
the surface inspection of edge-banded components, it 
is essential to define the specific production processes 
and characteristics of these components. The assess-
ment of edge banding panel appearance quality re-
quires the establishment of clear evaluation items, 
standards, and inspection criteria. Once these criteria 
are set, the appearance quality of the panels can be 
quantified and assessed based on the data collected. An 
overview of the inspection items and their correspond-
ing standards is presented in Table 1.

2.2.2 	Data set training
2.2.2. 	Treniranje skupa podataka

In order to address the challenges associated with 
defect detection, a comprehensive dataset of 1,887 im-

ages was collected during the production of edge band-
ed panels. The preprocessing of the dataset followed a 
series of systematic steps to ensure the quality and uni-
formity of the data. The initial step involved cropping 
the images to remove irrelevant regions, followed by 
resizing all images to a consistent resolution of 
640×640 pixels. To enhance the model’s robustness 
and reduce the risk of overfitting, data augmentation 
techniques such as rotation, translation, and scaling 
were applied. These transformations helped improve 
the model’s ability to generalize across a wider range 
of defect scenarios. Some of the results after process-
ing are shown in Figure 2.

The labeled dataset was created using the Labe-
lImg annotation tool, and the process is shown in Fig-
ure 3, ensuring that each image contained the neces-
sary details, including the precise location, type, and 
extent of defects. This annotation process enabled the 
creation of bounding boxes around each defect, which 
were then used to train the deep learning model.

The training data set was used to train the 
YOLOv7 model, utilizing the Pytorch deep learning 
framework. The input image size for training was fixed 

Table 1 Appearance quality inspection items and standards of edge banding plate
Tablica 1. Stavke kontrole kvalitete izgleda i standardi za rubne trake na ploči

Serial No.
Serijski broj Test items / Ispitivane stavke Test standard / Standard ispitivanja

1
Edge banding colors and 
specifications
boje i specifikacije rubnih traka

Consistent with production and process requirements
u skladu sa zahtjevima proizvodnje i procesa

2

Trim roughness, wave pattern, 
trim gloss
hrapavost obrubljivanja, valoviti 
uzorak, sjaj obrubljivanja

No scratching sensation when touched by hand, 30 cm sight distance in 
natural light, cannot be seen visually under normal vision
nema osjećaja hrapavosti pri dodiru rukom, vidljivost s udaljenosti 30 cm 
na prirodnom svjetlu, ne može se vizualno vidjeti golim okom

3 Finished size
konačna veličina

Size error after banding ≤ 0.5mm
pogreška veličine nakon obrubljivanja ≤ 0,5 mm

4 Shortage of walking edge 
nedostatak ruba

Shortage, walking edge maximum width between (0.15~0.2) mm
nedostatak ruba, maksimalna širina ruba između (0,15~0,2) mm

5 Seam allowance
dodatak za obrub

Edge end allowance ≤ 0.1mm
dodatak za kraj ruba ≤ 0,1 mm

6 Edge banding glue line
linija ljepila za rubnu traku

The maximum width of the edge banding line ≤ 0.1 mm, the maximum length 
is less than or equal to 10 mm, and not more than 3 places within 100 mm
maksimalna širina linije rubne trake ≤ 0,1 mm, maksimalna duljina manja 
je ili jednaka 10 mm i ne na više od tri mjesta unutar 100 mm

7 Pinholes, slits
rupice, prorezi

Continuous pinhole maximum width ≤ 0.1 mm and maximum length ≤ 
100mm, not more than 3 on any one side
kontinuirana rupica maksimalne širine ≤ 0,1 mm i maksimalne duljine ≤ 
100 m; ne više od tri na bilo kojoj strani

8 Cleaner separator marks
tragovi čistača

The width of the print on the surface of the board after banding is ≤10mm
širina otiska na površini ploče nakon obrubljivanja je ≤ 10 mm

9 Appearance Quality
kvaliteta izgleda

Board surface cleanliness (residual glue, stains, etc.) and appearance 
defects (black spots, pen marks, scratches, etc.) width <0.6mm
čistoća površine ploče (ostatci ljepila, mrlje itd.) i nedostatci izgleda (crne 
mrlje, tragovi olovke, ogrebotine itd.) širine < 0,6 mm

10 Rounded corners
zaobljeni kutovi

Thin edge does not allow scratching hands, edge banding with thick edge 
on both sides of the inverted R1 ~ 1.5 arc
tanki rub sprečava grebanje ruku; obrubljivanje debelim rubom s obje 
strane obrnutog luka R1 ~ 1,5
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with a coefficient of 0.001 to prevent overfitting. The 
Adam optimizer was employed to update the model’s 
weights, and the Leaky ReLU activation function was 
used to enhance the model’s non-linearity.

Throughout the training process, the learning rate 
was dynamically adjusted, decreasing to 0.0001 after 
400 iterations to ensure convergence as the model ap-
proached optimal performance. The training continued 
for 500 iterations, after which the model achieved sta-

Figure 2 Some image samples after preliminary processing
Slika 2. Primjeri slika uzoraka nakon preliminarne obrade

Figure 3 LabelImg process diagram
Slika 3. Procesni dijagram LabelImg

Figure 4 Model performance analysis a) loss value, b) recall rate, c) accuracy rate (precision rate), d) average precision mean
Slika 4. Analiza performansi modela: a) vrijednost gubitka, b) stopa opoziva, c) stopa točnosti (stopa preciznosti), d) 
prosječna srednja vrijednost preciznosti

at 640×640 pixels to maintain consistency and facili-
tate efficient processing. During training, the initial 
learning rate was set at 0.001, with a batch size of 20 
and a total of 500 iterations. Weight decay was applied 

Epoch / epoha

Epoch / epoha

Epoch / epoha

Epoch / epoha

L
os

s /
 g

ub
ita

k

m
A

P 
0.

5

Pr
ec

is
io

n 
/ p

re
ci

zn
os

t

R
ec

al
l /

 o
da

zi
v

a) b)

c) d)



Fu, G. Lu, Qian, Xiong, D. Lu: YOLOv7-Driven Visual Inspection System for Edge Banding Defects in Panel Furniture

  76 (4) 407-418 (2025)  413 

bility in its performance metrics. The training process 
was closely monitored through the visualization of key 
metrics, such as loss values, recall rate, accuracy, and 
average precision, using TensorBoard, and the visuali-
zation results are shown in Figure 4. The visualization 
of these metrics helped assess the model’s learning 
progress and provided insights into potential areas for 
further optimization. As can be seen in Figure 4, the 
loss value decreases as the number of iterations in-
creases, and at 500 iterations, the loss value < 0.004, 
the recall rate is stable at 75.4 %, and the final accuracy 
rate and average precision of the model are stable at 
82.1 % and 78.4 % on average. From the above evalu-
ation metrics, the network model meets the expectation 
after training through the defective set.

3 	 RESULTS AND DISCUSSION
3. 	REZULTATI I RASPRAVA

3.1 	 Common appearance defects
3.1. 	Uobičajene greške izgleda

The detection of appearance defects in edge band-
ing panels was carried out based on the categories out-
lined in Table 1. Six representative defect types were 
identified and classified, including unglued areas, short-
ages, chipping, uneven trimming, glue lines, and inden-
tation, as shown in Figure 5. Each defect type was ana-

lyzed to determine its characteristics and impact on the 
overall appearance quality of the edge banding.

The decision process for categorizing defects in-
volved a comprehensive analysis of the color, texture, 
shape, and boundary characteristics of the defects, en-
suring that each defect was accurately identified and la-
beled during the image annotation process. These defect 
categories are vital for the subsequent training of the 
model and the evaluation of its detection capabilities.

3.2 	 Data set validation
3.2. 	Validacija skupa podataka

The performance of the trained model was eval-
uated using real-time data obtained from an industrial 
CCD camera during the production process. The mod-
el was tested on a set of images taken directly from the 
production line to assess its ability to detect defects 
under practical conditions. The detection threshold 
was set at a confidence level of 0.50, meaning that 
only predictions with a confidence score higher than 
50 % were considered valid. The detection effect is 
shown in Figure 6.

The model’s ability to detect the six types of de-
fects was analyzed by comparing the predicted results 
with ground truth annotations. As shown in Figure 6, 
the model demonstrated high accuracy in identifying 
defects such as unglue, shortage, chipping, uneven 

Figure 5 Several common types of edge defects: a) unglue, b) shortage, c) chipping, d) uneven trimming, e) glue line, 
residual glue, f) edge indentation
Slika 5. Nekoliko uobičajenih grešaka ruba: a) odljepljivanje, b) nedostatak rubne trake, c) krhotine, d) neravnomjerno 
obrezivanje, e) neuredna linija lijepljenja, ostatci ljepila, f) udubljenje ruba

a) b) c)

e) f)d)
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trimming, glue lines, and indentation. Notably, the fi-
nal accuracy rate of the model was maintained above 
82 %, which indicates a strong ability to detect defects 
in edge banding panels with high precision.

3.3 	 Performance evaluation
3.3. 	Evaluacija performansi

As can be seen from Figure 6, the trained 
YOLOv7 model was subjected to a series of compre-
hensive performance evaluations to assess its effec-
tiveness in defect detection for edge banding panels. 
The key performance metrics used for this evaluation 
included mean average precision (mAP), recall rate, 
precision rate, and detection speed (FPS).

The mean average precision (mAP), a crucial in-
dicator of overall model performance, was calculated 

to be 74.8 %. This metric reflects the model’s ability to 
correctly classify and localize defects across multiple 
categories. When compared with other state-of-the-art 
models, such as YOLOv4 (68.2 % mAP) and Faster 
R-CNN (71.5 % mAP), the YOLOv7 model demon-
strated superior performance in both accuracy and pre-
cision. This higher mAP indicates that YOLOv7 can 
detect defects more reliably, even in complex and vari-
able conditions, offering a significant improvement 
over previous model.

The recall rate, which measures the model’s abil-
ity to correctly identify all relevant defects, was found 
to be 75.4 %. A recall rate of this magnitude suggests 
that the model is highly effective in reducing false neg-
atives, i.e., defects that are not identified by the system. 
This is particularly important for ensuring that the in-

Figure 6 Comparison of the actual detection effect of edge banding defects: a) unglue, b) in short supply, c) collapse, d) 
uneven trimming, e) glue thread, f) edge indentation
Slika 6. Usporedba stvarnog učinka detekcije grešaka rubne trake: a) odljepljivanje, b) manjak nanosa ljepila, c) kolaps, d) 
neravnomjerno obrezivanje, e) probijanje ljepila, f) uvlačenje ruba

a) b) c)

e) f)d)
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spection process does not overlook critical defects, 
which could compromise the overall quality of the 
product.

The precision rate, a metric that assesses the 
model’s ability to minimize false positives (incorrectly 
identified defects), was also high, indicating that the 
YOLOv7 model only flagged defects that were truly 
present in the images. This balance between high recall 
and precision ensures that the model not only identifies 
defects accurately but also avoids excessive misclassi-
fication of non-defective areas as defects.

Finally, the model’s real-time processing speed, 
evaluated at 57.63 frames per second (FPS), was more 
than adequate for high-speed production lines. This 
speed ensures that the system can analyze images in 
real time without introducing significant delays in the 
production process. It confirms that the YOLOv7 mod-
el meets the requirements of industrial settings, where 
timely defect detection is crucial to maintaining pro-
duction efficiency and quality control.

In summary, the YOLOv7 model achieved high 
accuracy (74.8 % mAP), robust defect detection capa-
bilities (75.4 % recall rate), and fast processing speed 
(57.63 FPS), making it a highly effective solution for 
real-time defect detection in edge banding panels.

3.4 	 Real-world application
3.4. 	Stvarna primjena

To validate the practical applicability of the 
YOLOv7 model beyond the controlled test environ-
ment, it was deployed in a real-time industrial setting on 
a production line producing edge banding panels. The 
flow of using the tool is shown in Figure 7. The integra-
tion of the model into the production line was conduct-
ed to assess its performance under actual operating con-
ditions, where variables such as lighting changes, 
product variability, and production speed could impact 
detection accuracy. During the deployment, the model 
was tasked with detecting defects such as glue leakage, 
chipping, uneven trimming, and edge indentation in re-
al-time as edge banding panels were processed. The 
real-time detection capability of the YOLOv7 model al-

lowed for immediate feedback on the quality of the pan-
els, enabling quick identification and rectification of 
defects before the panels moved further along the pro-
duction line. One of the most notable outcomes of this 
real-world application was a reduction in defect escape 
rates, which dropped to below 5 % following the de-
ployment of the model. This significant improvement 
suggests that the YOLOv7 model can effectively pre-
vent defective panels from passing through the produc-
tion process, ensuring that only high-quality products 
reach the final stages of manufacturing.

In contrast, previous manual inspection methods 
and traditional machine vision systems had higher de-
fect escape rates due to operator fatigue and the inher-
ent subjectivity of visual inspection. Additionally, the 
integration of the YOLOv7 model into the existing 
production line allowed for more efficient quality con-
trol, as it reduced the need for extensive manual in-
spections. The automated nature of the defect detection 
process not only reduced labor costs but also mini-
mized human error, further ensuring the consistency 
and reliability of quality checks.

Nevertheless, it is important to note that the cur-
rent experiments were conducted under relatively con-
trolled lighting and production conditions. In real-
world industrial environments, several external factors 
– such as lighting fluctuations, dust particles, or ma-
chine vibrations, can potentially influence the imaging 
quality and, consequently, the accuracy of defect detec-
tion. However, in the specific context of panel furniture 
manufacturing, these issues are generally less severe 
during the edge banding stage, which occurs in the 
later stages of processing. Unlike cutting or drilling op-
erations, where significant dust may be generated, the 
edge banding process is part of the finishing phase, 
where dust and environmental disturbances are mini-
mal. This characteristic of the manufacturing workflow 
helps mitigate some of the challenges associated with 
imaging system reliability.

To further improve robustness in less predictable 
industrial environments, several strategies can be con-

Figure 7 Appearance quality inspection process of edge-banding plate based on machine vision
Slika 7. Proces kontrole kvalitete izgleda rubnih traka na pločama uz pomoć strojnog vida
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sidered. For example, introducing multi-light-source 
compensation could stabilize illumination, while infra-
red or 3D cameras might provide additional modalities 
to overcome visual limitations. Enhanced image pre-
processing techniques could also be integrated to re-
duce the sensitivity of the system to noise, shadows, 
and reflections. These approaches represent promising 
directions for future research and align with the limita-
tions discussed in the conclusion, particularly regard-
ing the influence of lighting conditions on system per-
formance.

Overall, the deployment of YOLOv7 demonstrat-
ed its potential to enhance quality control in the furni-
ture manufacturing industry. The model’s ability to 
process images in real time, coupled with its high ac-
curacy, made it an invaluable tool in minimizing de-
fects, reducing production costs, and ensuring product 
quality. This application not only verifies the model’s 
efficacy in an industrial setting but also highlights its 
scalability and potential for widespread use in similar 
production environments.

4 	 CONCLUSIONS
4. 	ZAKLJUČAK

The results of this study have important theoreti-
cal and practical implications. From a theoretical per-
spective, this research explores the potential of 
YOLOv7-Tiny, a lightweight version of the YOLOv7 
architecture, in the context of edge computing. 
YOLOv7-Tiny is designed to be computationally effi-
cient while maintaining high performance, making it 
an ideal candidate for deployment in industrial embed-
ded systems with limited processing power. Compact 
model architecture allows for real-time defect detec-
tion on edge devices, such as industrial cameras and 
embedded processors, without the need for cloud-
based infrastructure. This capability is especially valu-
able in settings where low latency is critical, such as in 
high-speed production lines. By demonstrating the fea-
sibility of deploying YOLOv7-Tiny on edge devices, 
this study contributes to the growing body of work on 
embedded vision systems, highlighting the potential 
for such lightweight models to address the computa-
tional constraints of industrial applications. Moreover, 
compared with existing studies, this work further con-
tributes by exploring the integration pathway between 
deep learning and furniture manufacturing processes, 
thereby offering not only an engineering application 
but also an academic case for defect detection in noisy 
industrial environments.

From a practical standpoint, the deployment of 
YOLOv7-Tiny for defect detection in edge banding 
panels offers substantial cost-saving potential for man-
ufacturers. Traditional defect inspection processes, of-

ten relying on manual labor or older automated sys-
tems, incur significant operational costs. The 
YOLOv7-Tiny-based system, by contrast, can auto-
mate defect detection with greater accuracy and speed, 
reducing the reliance on human inspectors, including a 
decrease in the need for manual labor, faster defect de-
tection, and improved overall product quality that re-
duces the need for costly rework and customer returns. 
Furthermore, the real-time detection capabilities of the 
system enable timely interventions, ensuring that de-
fective products are identified and addressed immedi-
ately, thereby enhancing overall production efficiency.

However, there are several limitations that must 
be addressed. One of the primary limitations of this 
study is the lack of data diversity. The model was 
trained using data from only four production lines, 
which may not fully capture the variability present in 
different production environments or across diverse 
types of edge banding panels. As such, the model’s per-
formance might be limited when applied to other pro-
duction settings with different materials, defect types, 
or manufacturing conditions. Expanding the dataset to 
include a wider variety of production lines and defect 
categories would help to improve the generalizability 
of the model. Additionally, this study did not account 
for the effects of lighting variations, a factor that can 
significantly influence the performance of machine vi-
sion systems. In real-world industrial settings, lighting 
conditions are often dynamic, and changes in light in-
tensity, shadows, or reflections can affect the accuracy 
of defect detection. Future research should explore the 
impact of lighting changes on model performance and 
develop strategies to mitigate these challenges, such as 
incorporating dynamic lighting compensation algo-
rithms or enhancing image preprocessing techniques.

Looking ahead, there are several promising di-
rections for future work. One potential avenue for im-
proving defect detection is the integration of multi-
modal data, such as combining 3D point clouds with 
traditional RGB images. The addition of depth infor-
mation could enhance the model’s ability to detect sub-
tle surface defects that may not be apparent in 2D im-
ages, such as slight indentations or surface 
deformations. By incorporating 3D imaging technolo-
gies, the model could be made more robust to varia-
tions in the geometry and surface textures of the pan-
els. Another area of future development is the creation 
of an adaptive threshold adjustment algorithm to opti-
mize detection performance in real-time. In many de-
fect detection applications, it is essential to balance the 
detection of false positives (incorrectly flagged de-
fects) and false negatives (missed defects). By dynami-
cally adjusting the detection threshold based on contex-
tual factors, such as defect type, environmental 
conditions, or production speed, it would be possible to 
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reduce misdetections while maintaining high detection 
accuracy. These improvements could significantly en-
hance the robustness and reliability of the system, mak-
ing it even more suitable for industrial deployment.

In conclusion, this study demonstrates the effec-
tiveness of YOLOv7-Tiny as a lightweight and efficient 
solution for defect detection in edge banding panels. De-
spite limitations related to data diversity and the impact 
of lighting changes, the findings indicate that the model 
is a viable option for real-time defect detection in indus-
trial settings. Importantly, the research extends beyond 
engineering practice by providing a transferable meth-
odological framework for defect detection in high-tex-
ture-complexity materials such as wood, offering valu-
able theoretical insights for academic research while 
also serving as a practical tool for automated quality 
control in the furniture manufacturing industry.
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